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In the past decade, nine silent earthquakes were documented along the Nankai and the Sagami Troughs in Japan,
which form the northwestern margin of the Philippine Sea plate. They occurred in the stable-unstable transition
zone at depths of around 30 km on the subduction interface and were segregated from major asperities of the 1923
Kanto, the 1944 Tonankai and the 1946 Nankai earthquakes. Their equivalent magnitudes were less than 7 and
overall slips were less than 0.2 m, one-order smaller than those of the major asperities of ordinary great earthquakes.
Moment release rates of the silent earthquakes were less than 1014 Nm/s, five-orders smaller than 1019 Nm/s of the
great earthquakes. Two methodologies are attempted to obtain order of magnitude estimates of the roughness and
friction parameter of source areas of some of the silent earthquakes. One method compares observed waveforms to
synthetics with an empirical source time function based on laboratory experiment. The other relates sizes of silent
earthquakes to the friction parameter a-b.
Key words: Silent earthquake, fault roughness, stable-unstable transition zone, Nankai Trough, Sagami Trough.

1. Introduction
Great Mw 8 earthquakes recur at intervals of about 100

years along the Nankai and the Sagami Troughs on the north-
western margin of the Philippine Sea plate, which is subduct-
ing at a rate of around 5–6 cm/yr (e.g., Seno et al., 1993).
Figure 1 shows a vertical cross section of the distribution of
microearthquakes (Nakamura et al., 1997) under southwest
Japan. The region labeled (A) is the seismogenic zone where
the interplate coupling is strong and major earthquakes recur.
(C) is a region where stable sliding is dominant. (B) is the
stable-unstable transition zone between (A) and (C), as sug-
gested by geodetic inversion of GPS data by Ito et al. (1999)
and Sagiya (1999).

This article consists of two parts: a summary of silent
earthquakes recently documented along the Nankai and the
Sagami Troughs and two independent order of magnitude es-
timates of the roughness and friction parameter of the source
areas of silent earthquakes on the subduction interface.

2. Spatial Distribution of Silent Earthquakes
There have previously been numerous studies on aseismic

events: e.g., Pelayo and Wiens (1992) and Kanamori and
Kikuchi (1993) from anomalous excitation of long period
seismic waves, Beroza and Jordan (1990) from free oscilla-
tions and Linde et al. (1988) and Kawasaki et al. (1995) from
continuous recordings of crustal strains and tilts. Recently,
there were new findings of silent earthquakes with GPS data
in the Cascadia (e.g., Dragert et al., 2001), Alaskan (e.g.,
Freymueller et al., 2002) and Mexican (e.g., Lowry et al.,
2001) subduction zones.
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In Japan, there have been 9 silent earthquakes identified in
the past decade along the Nankai and the Sagami Troughs,
as listed in Table 1 and plotted together with ordinary great
earthquakes in Fig. 2. Slow-slip-event is hereafter used as a
general term for all aseismic events. Mwa is an equivalent
magnitude of slow-slip events, first defined by Kawasaki et
al. (2001) through a relationship, log Moa = 1.5Mwa +
9.1, where Moa (Nm) is the static moment inverted from
geodetic data.

Fujii (1993) obtained a fault plane solution and an inter-
plate moment of the 1970 Chiba silent earthquake (SL1 in
Table 1) by an inversion of leveling data from GSI (Geo-
graphical Survey Institute, Japan). The source duration time
of the event is unknown. Hirose et al. (2000) found the 1989
Tokyo Bay silent earthquake (SL2) (Mwa 5.9) with a source
duration time of around 1 day, using continuous recordings
of crustal tilts by NIED (National Research Institute of Earth
Sciences and Disaster Prevention, Japan). Other events were
detected by GPS data of GEONET, which was established
in 1994 by GSI (e.g., Hatanaka et al., 2003). Sagiya (2004)
obtained fault models of the offshore Boso Peninsula silent
earthquakes that recurred in 1996 (Mwa 6, source duration
time of a few days, SL3) and in 2002 (Mwa 6.5, source du-
ration time of a few days, SL8). Hirose et al. (1999) iden-
tified the 1997 Bungo Channel silent earthquake (SL4) of
Mwa 6.6 that had a source duration time of around 1 year
and recurred in 2003 (SL9), as reported by GSI (2004). Re-
cently, the Tokai silent earthquake (SL7) initiated in 2001
(Kimata et al., 2002) and is still active with a current size of
Mwa 7.0 (GSI, 2003b). All of the silent earthquakes were
located between the subducting Philippine Sea and the over-
riding Eurasian plates, except the two Offshore-Choshi silent
earthquakes that recurred in 1999 (Mwa 5.6, source duration
time of a few days, SL5) (Harada et al., 2000) and in 2000
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Fig. 1. Seismic cross section subparallel to the latitudinal line at longitude 133E across the Nankai Trough and Chugoku and Shikoku districts, where the
Philippine Sea plate is subducting beneath the overriding Eurasian plate. MTL is median tectonic line. The area labeled (A) is the seismogenic region.
(C) is a region where stable sliding on the subduction interface is dominant. (B) is the stable-unstable transition zone between (A) and (C). Modified
from the panel E in figure 8 of Nakamura et al. (1997).

Fig. 2. Distribution of the silent earthquakes (solid), the afterslips (solid with course hatching) and major asperities (fine hatching) of Mw 8 class interplate
earthquakes. Plate-depth contours are after Miyoshi and Ishibashi (2002) for southwest Japan including the Nankai Trough and Ishida (1992) for the
Kanto district, including the Sagami Trough.

(Mwa 5.6, source duration time of a few days, SL6) (Hirose
et al., 2001) on the subduction interface of the Pacific plate.
It should be noted that the source duration time, T o, widely
ranged from around 1 minute for the great Mw 8 earthquakes
to a few years for the Tokai silent earthquake. Focal mech-
anisms of the slow-slip-events can be commonly interpreted
to be low angle thrusting on the plate boundary. Seismic ac-
tivity was generally not associated with these events, except
for low level seismicity related to the two Boso Peninsula
silent earthquakes (Sagiya, 2004). Obara (2002) discovered
nonvolcanic deep tremors at depths of the stable-unstable
transition zone, but their relation to the slow-slip-events is
unknown.

Figure 2 shows the spatial distribution of the slow-slip-
events and major asperities of the Mw 8 interplate earth-
quakes. Asperities of the 1923 Kanto and the 1944 Tonankai
earthquakes were obtained by seismic waveform inversion
by Wald and Somerville (1995) and Kikuchi et al. (2003),

respectively. Asperities of the 1946 Nankai earthquake are
defined here as the areas which show large slips in all the in-
version results obtained from leveling (Sagiya and Thatcher,
1999), tsunami (Tanioka and Satake, 2001) and seismic in-
tensity data (Kanda et al., 2003). Figure 2 displays that
the slow-slip-events are separated from the major asperities.
This kind of segregation was first reported by Yagi et al.
(2001) for the asperity and the afterslip area of the 1996
Hyuganada earthquake. Average amount of slips of major
asperities of the Mw 8 class earthquakes were around 3–5
m, except for the northeast smaller asperity of the Tonankai
earthquake with a slip of 1–2 m. Average amounts of slips
for the silent earthquakes were less than 0.2 m, one-order
smaller than those of the major asperities. In other words, the
silent earthquakes occurred in the transition zone between
the seismogenic zone and the zone where stable sliding is
dominant. The depth of the transition zone was suggested to
be around 30 km along the Nankai Trough by thermal mod-
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Table 1. Silent earthquakes, afterslips and Mw 8 class ordinary earthquakes along the Sagami and the Nankai Troughs. EQ1 to EQ3 are Mw 8 class giant
earthquakes that occurred along the Sagami and the Nankai Troughs. SL1 to SL8 are silent earthquakes recently documented in Japan. AS1 and AS2
are afterslips. Mo and Moa are moments for ordinary and silent earthquakes, respectively. Mw is moment magnitude. Mwa is equivalent magnitude
estimated from Moa through the relationship, log Moa = 1.5 × Mwa + 9.1. Do is an overall slip. T o is a source duration time. S, Leveling, Tilt and
GPS in Data type column denote seismic records, levelling, continuous recording of crustal tilt, and GPS, respectively. References are (1) Wald and
Somerville (1995), (2) Kikuchi et al. (2003), (3) Kanamori (1972), (4) Fujii (1993), (5) Hirose et al. (2000), (6) Sagiya (2004), (7) Hirose et al. (1999),
(8) Harada et al. (2000), (9) Hirose et al. (2001), (10) GSI (2003b), (11) GSI (2003a), (12) GSI (2004) and (13) Yagi et al. (2001).

No. Event Mw Mwa Mo Moa Do T o Ref. Data
1018 Nm m day type

EQ1 1923 Kanto 7.9 700–800 3.5 0.0008 (1) S
EQ2 1944 Tonankai 7.9 960 2.9 0.0007 (2) S
EQ3 1946 Nankai 8.0 1500 3.1 0.001 (3) S
SL1 1970 Chiba 6.5 7.6 0.4 (4) Leveling
SL2 1989 Tokyo Bay 5.9 0.75 0.02 ∼1 (5) Tilt
SL3 1996 Boso 6.0 1 0.1 ∼5 (6) GPS
SL4 1997 Bungo Channel 6.6 11 0.18 ∼300 (7) GPS
SL5 1999 Choshi-oki 5.6 0.33 0.03 ∼5 (8) GPS
SL6 2000 Choshi-oki 6.1 1.7 0.17 2∼3 (9) GPS
SL7 2001-ongoing Tokai 7.0 40 0.20 ∼1500 (10) GPS
SL8 2002 Boso 6.5 ∼10 0.1 ∼10 (11) GPS
SL9 2003 Bungo-Channel 6.6 11 0.11 ∼60 (12) GPS
AS1 1996 Hyuga-nada (a) 6.8 17 0.1 ∼50 (13) GPS
AS2 1996 Hyuga-nada (b) 6.8 20 0.1 ∼50 (13) jk,GPS

els (e.g., Hyndman and Wang, 1993) and geodetic inversions
(e.g., Ito et al., 1999).

3. A Source Parameter Gap between Ordinary and
Silent Earthquakes

Figure 3 is a moment and moment-rate diagram. The
fault length L is calculated using the relationship Mo =
2 × 106 × L3 following Sato (1979), when plotting the iso-
V r lines in Fig. 3. It should be noted that there is a gap of
5 orders of moment rates between 1014 Nm/s of the silent
earthquakes and 1019 Nm/s of the ordinary earthquakes as
displayed in Fig. 3.

The zone between the two iso-V r lines of 1 mm/s and
1 m/s (source duration times from days to years) is called
the “GPS band” in this paper because all of the silent earth-
quakes in this zone were detected by GPS data. The other
zone between 1 m/s and 1 km/s is hereafter called the “strain-
meter and tiltmeter band” because the Tokyo Bay silent event
(Hirose et al., 2000) in this zone was detected by tiltmeter
records.

There seem to be confusions on naming conventions of
slow-slip-events. The present author would like to propose a
new convention which names slow-slip-events in the strain-
meter/tiltmeter band with source duration time of hours,
“slow earthquakes” and events in the GPS band with source
duration times of days to years, “silent earthquakes”. Also
afterslips are not included as slow/silent earthquakes.

Table 2 shows the correspondence between the previ-
ous classification of slow-slip-events by Beroza and Jordan
(1990), phases of the theoretical model of earthquake nu-
cleation of Shibazaki and Matsu’ura (1998), some of the
silent earthquakes and the new naming convention proposed.
The fastest event among the silent earthquakes was the 1989
Tokyo Bay silent earthquake. Thus, there is a gap of 3 or-
ders in rupture velocity between the silent earthquakes in the

Table 1 and the ordinary earthquakes and there were no slow-
slip-events that accelerated to the “dynamic but slow rupture
growth” of Shibazaki and Matsu’ura (1998).

4. Summary of Silent Earthquakes and Issues Re-
lated to Earthquake Prediction

We summarize below the basic features of the slow-slip-
events along the Nankai and the Sagami Troughs detected to
date.

(S1) There was a segregation between major asperities of
Mw 8 class earthquakes and source areas of the slow-slip-
events.

(S2) Major asperities of the Mw 8 class earthquakes were
shallower than about 30 km in the seismogenic zone. Overall
slips were about 3–5 m.

(S3) The silent earthquakes occurred in the stable-unstable
transition zone at depths of around 30 km.

(S4) The silent earthquakes had Mwa less than 7 and
overall slips were less than 0.2 m, one-order smaller than
the major asperities of the ordinary Mw 8 earthquakes.

(S5) The silent earthquakes were associated with little
seismic activity.

(S6) Moment release rates of the silent earthquakes along
the Sagami Trough were one- or two-orders larger than those
along the Nankai Trough.

(S7) There was a gap of 5-orders in the moment release
rates between the silent earthquakes and the ordinary earth-
quakes. There were no slow earthquakes that reached the
“dynamic but slow rupture growth”.

It is appropriate to mention ‘slow’ but seismic initial
phases, as reported by Ellsworth and Beroza (1998). These
observations could be described as slow-slip-events in their
early stage, then seismically observable in their later stages
as the seismic initial phase, if the forthcoming earthquake is
large enough.
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Table 2. Classification of slow-slip-events. Correspondence between classification of slow-slip-events by Beroza and Jordan (1990), phases of theoretical
model of earthquake nucleation of Shibazaki and Matsu’ura (1998), some of silent earthquakes in Fig. 1 and naming convention proposed in this paper.
V r is rupture propagation velocity.

Vr Beroza and Shibazaki and Silent Naming
Jordan (1990) Matsu’ura (1998) earthquakes proposed

1 km/s dynamic rupture —
0.1 km/s slow eq. dynamic but slow slow eq.
10 m/s silent eq. rupture growth
1 m/s 1989 Tokyo Bay —

10 cm/s creep event
1 cm/s quasi-static 1997 Bungo silent eq.
1 mm/s nucleation 2001 Tokai

Fig. 3. Moment and moment-rate diagram. Vertical axis is static moment
Mo or Moa (Nm). Horizontal axis is moment rate (Nm/s), defined as
Mo/T o or Moa/T o, where T o is overall source duration time. Diago-
nal lines are iso-V r lines, where V r is a characteristic rupture velocity.
Circles denote silent earthquakes, triangles afterslips, and squares ordi-
nary Mw 8 class earthquakes. See text for more details.

Studies of earthquake nucleation phase have been devel-
oped from laboratory experiments and numerical simula-
tions based on constitutive laws of friction: e.g., Das and
Scholz (1981), Dieterich (1979, 1986, 1994), Shibazaki and
Matsu’ura (1998), Ohnaka and Shen (1999), and Kato and
Hirasawa (1999). The rate- and state-dependent friction law
is now widely accepted. Although several variations of the
friction law were proposed, the friction parameter, a-b, in the
so-called Dieterich-Ruina law is commonly used to describe
quasi-static nucleation processes.

Yoshida and Kato (2003) and Kato (2003) performed nu-
merical simulations of two block models having different
friction. Following their results, we could regard silent earth-
quakes as one of the episodic phases in the stable-unstable

transition zone in the later stage of the seismic cycle.
Thus, the following issues are raised which are associated

with earthquake prediction.
(Issue-1) Do slow earthquakes occur with Mwa 7 or

greater and shorter source duration time of hours, filling the
gap in (S7)? In other words, what is the link between the
silent earthquakes in the stable-unstable transition zone and
ordinary earthquakes in the seismogenic zone?

(Issue-2) Could we anticipate how silent earthquakes will
grow?

5. Empirical Source Time Function based on Lab-
oratory Experiments

Ohnaka and Shen (1999) carried out laboratory exper-
iments on fault failure under compression on preexisting
faults having different roughness. The earthquake nucleation
phase consisted of three subphases, a quasi-static phase, an
accelerating phase and a fast-speed dynamic rupture. The
stage between the accelerating phase and the fast-speed dy-
namic rupture is called the critical stage.

Depending on the roughness of the fault surfaces, nucle-
ation processes were quite different. In the case of a rough
fault, growth rate was small and it took a long time to reach
dynamic rupture, while growth rate was large for a smooth
fault. However, they showed that, normalizing Ln(t) (size
of nucleation zone) to λc (the roughness of fault surface, see
Ohnaka and Shen, 1999), growth rate V n(t) during the ac-
celerating phase obeys a single comprehensive power low as

V n(t)

V s
= 8.87 × 10−29 ×

(
Ln(t)

2λc

)N K

(1)

where N K = 7.31 and V s is the S-wave velocity. The sub-
script n denotes a quantity during the accelerating phase. It
should be noted that the exponent N K and the proportional-
ity constant 8.87 × 10−29 varies with stiffness, normal stress
and stress rate and thus discussions below should be regarded
as a zero-order approximation.

A fault parameter linearly related to geodetic observations
is the moment, Mon(t) (Nm), of the nucleation zone. We
would like to transform Eq. (1) to a differential equation
for Mon(t). For this purpose, we begin by deriving another
power law which relates Ln(t) to Mon(t) as below.

Ohnaka (2000) suggested relationships between seismic
moment Mo, critical distance Dc and critical length Lc as

Mo = 1019 × Dc3 (2)
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Fig. 4. EW (upper figure) and NS (lower) components of GPS horizontal displacements at Hamamatsu due to the Tokai silent earthquake (SL7 in Table
1). Vertical axis is the GPS displacement. Horizontal axis is time in years. Dots are daily values. Graphs on the left are original data. Graphs on the
right show data with linear trends and annual variations removed. Broken lines are fitted curves for the period of 1996–2001 based on the time-to-failure
analysis of Kawamura et al. (2002).

Mo = 109 × Lc3 (3)

where the units of proportionality coefficients are N/m2.
Note that Lc is the size of the nucleation zone at the criti-
cal stage in this paper but was its half length in Ohnaka and
Shen (1999). The subscript c denotes a quantity at the crit-
ical stage. Squaring both sides of (3), multiplying by (2)
and taking the cube root, we have Mo = 101/3 × 1012 ×
Dc × Lc2. Assuming W c (width of nucleation zone) =
Lc and µ (rigidity) = 4 × 1010 N/m2, we have the mo-
ment at the critical stage as Moc = µ × Lc × W c × Dc =
4 × 1010 × Lc2 × Dc. Then, we have

Moc = 2 × 107 × Lc3. (4)

Assuming the same relationship as Eq. (4) for the accelerat-
ing phase to replace Moc and Lc with Mon(t) and Ln(t),
we have the second power law as

Mon(t) = 2 × 107 × Ln(t)3. (5)

The proportionality coefficient of 2×107 (N/m2) is one-order
larger than that for ordinary earthquakes (e.g., Sato, 1979).
Equation (5) is rewritten as

Ln(t) = g × Mon(t)1/3 (6)

where g = (2 × 107)−1/3. Substituting Ln(t) in Eq. (6) into
Eq. (1), we have

V n(t) = h × Mon(t)N K/3 (7)

where h = 8.87 × 10−29 × V s × [g/(2λc)]N K .
The nucleation zone expands by d Ln(t) = V n(t)dt dur-

ing a time increment dt . Substituting (6) and (7) into
d Ln(t) = V n(t)dt , we have

dt = d Ln(t)

V n(t)
= d Mon(t)

q × Mon(t)(N K+2)/3
(8)

where q = (3h/g) = 3 × 8.87 × 10−29 × V s ×
gN K−1/(2λc)N K . From (8), we have the following ordinary
differential equation as

d Mon(t)

dt
= q × Mon(t)(N K+2)/3 (9)

assuming that (N K + 2)/3 and Mon(t) are larger than 0.
Equation (9) describes growth during the accelerating phase.

Integrating (8) from t to td , we have

t = td − TE (t) (10)

where td is the time when Mon(td) is infinite and

TE (t) = 3

q × (N K − 1) × Mon(t)(N K−1)/3
. (11)
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Fig. 5. Solid line is the moment of the Tokai silent earthquake as a function of time for the period from 2000 to 2003, modified from GSI (2003b). Broken
lines show a width of one standard deviation. Horizontal axis is years. Vertical axis is (left) static moment Moa and (right) its equivalent magnitude.

It should be noted that q is inversely proportional to λcN K

and then TE (t) is proportional to λcN K .
Solving (10) and (11), we have

Mon(t) = Mon(t0)

[1 − (t − t0)/TE (t0)]3/(N K−1)
(12)

where t0 is a reference time and td − t0 = TE (t0). The
exponent of 3/(N K − 1) is around 1/2 since N K = 7.31
for the laboratory experiment of Ohnaka and Shen (1999).
Equation (12) seems to be consistent with overall waveforms
suggested by previous laboratory experiments and numerical
simulations (e.g., figure 6 in Dieterich, 1986).

6. Application of the Empirical Source Moment
Function

We try to fit synthetic waveforms using the source moment
function of Eq. (12) to waveforms from silent earthquakes.
This is quite similar to the time-to-failure analysis with an
exponent of around −1 by Varnes (1989) and Main (1999)
for predicting failure using seismicity prior to main shocks
and volcanic eruptions.

The Tokai silent earthquake was first detected and ob-
served to accelerate during the first half of 2001. Figure 4
shows the EW (upper figure) and the NS (lower) components
of the GPS horizontal displacements at Hamamatsu. Broken
lines are fitted curves for the period of 1996–2001 based on
the time-to-failure analysis of Kawamura et al. (2002), sug-
gesting a failure at the end of 2001 or beginning of 2002.
However, the event decelerated in the last half of 2001 and
again accelerated in the first half of 2002, and now the Mwa
of the event has grown larger than Mwa 7.0, as illustrated
in Fig. 5, which shows the moment of the Tokai silent earth-
quake as a function of time for the period from 2000 to 2003
(GSI, 2003b).

This analysis tells us that a single cycle of rupture growth
process can be modeled with the source moment function
(Eq. (12)) but the whole process including accelerations and
deceleration can not be adequately modeled. This implies

that the whole process is dependent on the heterogeneous
distribution of the frictional properties and a quantitative
prediction based on a fault constitutive relations requires
proper numerical mapping of the frictional properties.

7. Estimate of Roughness of the Subduction Inter-
face

We try to give order of magnitude estimates of the fault
roughness by fitting synthetic displacements to observed
waveforms of two recorded silent earthquakes.

Figure 6(A) shows GPS horizontal displacements due to
the 1997 Bungo Channel silent earthquake (SL4). Vertical
lines (E1)–(E5) indicate five earthquakes of Mw 5.8–6.7
which occurred in 1997 and 1998 in and around Kyushu
Island. The silent earthquake was separated in space and
time from these earthquakes (Hirose et al., 1999; Ozawa
et al., 2001). Comparing the synthetic displacements in
Fig. 6(B) with observed data at Saiki and Misho in (A), it
can be concluded that there is a fair agreement for λc from
5 m to 8 m and a satisfactory fit for λc = 6.5 m in the time
window from (b) to (c).

Comparing synthetic crustal tilts to the observed data at
Aikawa (AKW, borehole depth 95 m), Fuchu (FCH, 2750
m) and Iwatsuki (IWT, 3510 m), we can obtain an order of
magnitude estimate of λc = 2 ± 0.5 m for the source area of
the 1989 Tokyo Bay silent earthquake (SL2).

We would like to emphasize that this is a unique way to
estimate the roughness of subduction interface.

The stable-unstable transition zone corresponds to a
boundary zone where |a-b| is small between the seismo-
genic zone where velocity weakening (a-b < 0) domi-
nates and the stable sliding zone where velocity hardening
(a-b > 0) dominates. Based on numerical simulations of
a two-degree-of-freedom block-spring model, Yoshida and
Kato (2003) showed that slow-slip-events could occur where
|a-b| is small. Thus, the long source duration times of the
silent earthquakes could be due to the small |a-b| of the
stable-unstable transition zone.
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Fig. 6. (A) GPS horizontal displacements at Saiki (32.92N, 131.88E) on Kyushu Island and Misho (32.96N, 132.56E) on Shikoku Island in southwest
Japan. Horizontal axis is time in years. Vertical axis is displacement in cm. Vertical lines indicate earthquakes on (E1) Oct. 18, 1996 (Mw 6.6, 30.47N,
131.29E, Depth 22 km), (E2) Oct. 19, 1996 (Mw 6.7, 31.78N, 131.78E, Depth 22 km), (E3) Dec. 02, 1996 (Mw 6.7, 31.76N, 131.72E, Depth 33 km),
(E4) May 13, 1997 (Mw 6.0, 32.00N, 130.26W, Depth 16 km) and (E5) June 25, 1998 (Mw 5.8, 34.43N, 131.35E, Depth 15 km). (b), (c) and (d)
denote times when the nucleation phase was suggested to be initiated, decelerated and arrested, respectively. Modified from Hirose et al. (1999). (B)
shows synthetic source moment Mon(t) at Misho for λc of 5 m, 6.5 m and 8 m. Vertical axis is moment in Nm, which is scaled to surface displacement
at Misho.

8. Estimate of the Magnitude of a-b
We attempt another way to give a numerical estimate of

the friction. Dieterich (1992) and Kato (2003) derived re-
lationships between the size of a silent earthquake and the
friction parameter a-b from the Dieterich-Ruina law as

a-b = −cµLs/ (rc × σn) (13)

where rc is the radius of a circular area of a silent earthquake,
µ is rigidity, Ls is a characteristic slip, σn is normal stress,
and c = 7π/24. A major difficulty is that the values of
σn and Ls are unknown. Here, we tentatively assume that
σn is equal to the lithostatic stress. If the slip of a silent
earthquake becomes larger than Dc, it becomes a dynamic
rupture. Thus, the slip of a silent earthquake should be less
than Dc, which gives a lower bound of Dc. Here the slip of
a silent earthquake is tentatively assumed to be equal to the
characteristic slip Dc. If we assume Dc/Ls = 10 following
Kuwahara et al. (1987), Ls can be assumed to be one-tenth

Table 3. Numerical estimate of friction parameter a-b. rc is a radius of a
circular area of a silent earthquake, which is assumed here to be a squared
root of a faulting area over π . µ is rigidity, Ls characteristic slip, σn
normal stress, and c = 7p/24.

rc µ Ls σn a-b

km 1010 Nm cm MPa 10−5

SL2 9.1 4 0.24 900 −10

SL4 33.9 4 1.8 600 −3

SL7 25.9 3 2.0 600 −3

of the slip of a silent earthquake. With Eq. (13) and these
assumptions, we can obtain an order of magnitude estimates
of a-b as in Table 3. Considering the assumptions above,
the numerical estimates should be regarded as lower limits
of |a-b|.

The values are two-orders smaller than those determined
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from laboratory slip experiments (e.g., Kato and Hirasawa,
1999), which is consistent with the conclusion by numerical
simulation of Yoshida and Kato (2003) suggesting that slow-
slip-events are liable to occur where |a-b| is small.

9. Concluding Remarks
Major features of the slow-slip-events along the Nankai

and the Sagami Troughs can be summarized as follows:
There was a segregation between major asperities of Mw

8 class earthquakes and source areas of the slow-slip-events.
Silent earthquakes occurred in the stable-unstable transition
zone at depths of around 30 km. Overall slips were less than
0.2 m, one-order smaller than major asperities. There was a
gap of 5-orders in the moment rates between the silent earth-
quakes and the Mw 8 class ordinary earthquakes.

One problem in using these ideas for the prediction of
great subduction zone earthquakes using numerical simula-
tions based on constitutive laws of friction with distribution
of the interplate friction is that there is not sufficient infor-
mation to numerically map the heterogeneous distribution of
friction. Two methodologies are attempted to obtain order
of magnitude estimates of the roughness and the friction pa-
rameter in the source areas of the silent earthquakes. One
method compares observed data to synthetic waveforms with
a source time function described by Eq. (12). The other re-
lates sizes of silent earthquakes to a-b, based on Eq. (13).
However, the numerical estimations do not include sufficient
information on the level of friction. These estimates should
be regarded as a starting point toward future development of
numerical mapping of the interplate friction.
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