ABICに基づくインバージョン解析手法の発展 Development of the method of inversion analyses using ABIC

Yukitoshi Fukahata (Kyoto University)

Bad modelling leads to a bad inversion result. A bad inversion result suggests bad modeling. 悪いインバージョン結果には何か理由がある

Contents

- 0. Framework of inversion analysis using ABIC
- 1. More than one sort of prior information [Fukahata *et al.* 2004, 2003]
- 2. More than one sort of data (Joint inversion) [Fuuning, Fukahata, Yagi & Parsons 2014]
- 3. Weak non-linear inversion [Fukahata & Wright 2008]
- 4. Covariance components due to observation error [Fukahata & Wright 2008]
- 5. Covariance components due to modeling error
 - -1. Discretization error [Yagi & Fukahata 2008]
 - -2. Errors of Green's function [Yagi & Fukahata 2011]

Reference: 地震学におけるABICを用いたインバージョン解析研究の進展, 深畑, 地震2, S103-S113, 2009.

Inversion Algorithm Using ABIC for slip inversion (1)

(Based on Yabuki & Matsu'ura, 1992)

1. Parametric Expansion

$$u(x,y) = \sum_{k=1}^{m} \sum_{l=1}^{L} a_{kl} X_{k}(x) Y_{l}(y)$$

$$a_{kl}: \text{ model parameter, } u: \text{ slip distribution,}$$

$$X_{k}(x), Y_{l}(y): \text{ basis function}$$

d =
$$\mathbf{H}\mathbf{a} + \mathbf{e}$$
 d: data, **e**: error, _

$$\mathbf{d} = \mathbf{H}\mathbf{a} + \mathbf{e} \qquad \mathbf{d}: \text{ data, } \mathbf{e}: \text{ error, } \underline{\mathbf{e}} \sim N(\mathbf{0}, \sigma^2 \mathbf{E})$$

$$p(\mathbf{d} \mid \mathbf{a}; \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} |\mathbf{E}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{d} - \mathbf{H}\mathbf{a})^T \mathbf{E}^{-1}(\mathbf{d} - \mathbf{H}\mathbf{a})\right]$$
断層運動による地表の変形応答(e.g., Okada, 1985)が必要

3. Prior Information (smoothness condition) $\int_{XY} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy = \mathbf{a}^T \mathbf{G} \mathbf{a} \quad \rightarrow \quad \text{small}$ $p(\mathbf{a};\rho^2) = (2\pi\rho^2)^{-\frac{m}{2}} |\mathbf{G}|^{\frac{1}{2}} \exp\left[-\frac{1}{2\rho^2} \mathbf{a}^T \mathbf{G} \mathbf{a}\right]$

Inversion Algorithm Using ABIC for slip inversion (2) (Based on Yabuki & Matsu'ura, 1992)

- 4. Bayes' Theorem (観測からの情報と先験的情報を統合) $p(\mathbf{a};\sigma^{2},\rho^{2} | \mathbf{d}) = cp(\mathbf{d} | \mathbf{a};\sigma^{2})p(\mathbf{a};\rho^{2})$ $= c(2\pi\sigma^{2})^{-(n+m)/2}(\alpha^{2})^{P/2} |\mathbf{E}|^{-1/2} |\mathbf{G}|^{1/2} \times \exp\left[-\frac{1}{2\sigma^{2}}s(\mathbf{a};\alpha^{2})\right]$ with $s(\mathbf{a};\alpha^{2}) = (\mathbf{d} - \mathbf{Ha})^{T} \mathbf{E}^{-1} (\mathbf{d} - \mathbf{Ha}) + \alpha^{2} \mathbf{a}^{T} \mathbf{Ga} \qquad (\alpha^{2} = \sigma^{2}/\rho^{2}: \text{ hyperparameter})$
- 5. ABIC Minimum (ABIC: Akaike's Bayesian Information Criterion) ABIC $(\sigma^2, \alpha^2) = -2\log \int p(\mathbf{a}; \sigma^2, \alpha^2 | \mathbf{d}) d\mathbf{a} + C$

The criterion of ABIC minimum $\rightarrow \hat{\sigma}^2, \hat{\alpha}^2$

Given σ^2 , α^2 , based on maximum likelihood method $\rightarrow \hat{\mathbf{a}} = \left[\mathbf{H}^T \mathbf{E}^{-1} \mathbf{H} + \hat{\alpha}^2 \mathbf{G}\right]^{-1} \mathbf{H}^T \mathbf{E}^{-1} \mathbf{d}$ $\hat{\mathbf{C}} = \hat{\sigma}^2 (\mathbf{H}^T \mathbf{E}^{-1} \mathbf{H} + \hat{\alpha}^2 \mathbf{G})^{-1}$

Observation eq.
$$\mathbf{d} = \mathbf{H}\mathbf{a} + \mathbf{e}; \ p(\mathbf{d} \mid \mathbf{a}; \sigma^2)$$
Prior information
 $r = \mathbf{a}^T \mathbf{G}\mathbf{a}; \ p(\mathbf{a}; \rho^2)$ Bayes Thorem $p(\mathbf{a}; \sigma^2, \rho^2 \mid \mathbf{d}) = cp(\mathbf{d} \mid \mathbf{a}; \sigma^2) p(\mathbf{a}; \rho^2)$
 $= c(2\pi\sigma^2)^{-(n+m)/2} (\alpha^2)^{p/2} |\mathbf{E}|^{-1/2} |\mathbf{G}|^{1/2} \times \exp\left[-\frac{1}{2\sigma^2} s(\mathbf{a}; \alpha^2)\right]$ with $s(\mathbf{a}) = (\mathbf{d} - \mathbf{H}\mathbf{a})^T \mathbf{E}^{-1} (\mathbf{d} - \mathbf{H}\mathbf{a}) + \frac{\sigma^2}{\rho^2} \mathbf{a}^T \mathbf{G}\mathbf{a}$ ABIC(σ^2, ρ^2) = $-2 \log\left[\int p(\mathbf{a}; \sigma^2, \rho^2 \mid \mathbf{d}) d\mathbf{a}\right] + C$ (Akaike 1980)minimum ABIC \square Optimal σ^2, ρ^2 (hyperparameter)

ABIC enables us to determine the relative weight between observed data and prior information objectively.

ABIC determines the relative weight based on statistics

Extension of inversion methods using ABIC

CASE1: More than one sort of prior information

Prior Information

$$\begin{cases} \int_{T} \int_{x} \left[\frac{\partial^{2} u(x,t)}{\partial x^{2}} \right] dx dt = \mathbf{a}^{T} \mathbf{G}_{1} \mathbf{a} \\ \int_{T} \int_{x} \left[\frac{\partial^{2} u(x,t)}{\partial t^{2}} \right] dx dt = \mathbf{a}^{T} \mathbf{G}_{2} \mathbf{a} \\ \int_{T} \int_{x} \left[\frac{\partial^{2} u(x,t)}{\partial t^{2}} \right] dx dt = \mathbf{a}^{T} \mathbf{G}_{2} \mathbf{a} \\ \end{bmatrix} \begin{bmatrix} p(\mathbf{a};\rho_{1}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2\rho_{1}^{2}} \mathbf{a}^{T} \mathbf{G}_{2} \mathbf{a} \right] \\ p(\mathbf{a};\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2\rho_{2}^{2}} \mathbf{a}^{T} \mathbf{G}_{2} \mathbf{a} \right] \\ \end{bmatrix} \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-m} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} \right|^{\frac{1}{2}} \left| \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ (ex, Yoshida, 1989) \\ Ide et al. 1996) \\ \end{bmatrix} \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right] \\ p(\mathbf{a};\rho_{1}^{2},\rho_{2}^{2}) = (2\pi)^{-\frac{m}{2}} \left| \frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \mathbf{a}^{T} \left(\frac{\mathbf{G}_{1}}{\rho_{1}^{2}} + \frac{\mathbf{G}_{2}}{\rho_{2}^{2}} \right) \mathbf{a} \right]$$

(Fukahata et al., 2004, 2003)

Expression of ABIC

$\frac{\mathbf{Proper}}{\text{ABIC}(\alpha^2, \beta^2)} = N \log s(\mathbf{a^*}) - \log \|\alpha^2 \mathbf{G}_1 + \beta^2 \mathbf{G}_2\| + \log \|\mathbf{H}^T \mathbf{H} + \alpha^2 \mathbf{G}_1 + \beta^2 \mathbf{G}_2\| + C'$

Improper

 $ABIC(\alpha^{2},\beta^{2}) = (N + P_{1} + P_{2} - M) \log s(\mathbf{a}^{*}) - \log \alpha^{2P_{1}} \beta^{2P_{2}}$

$$+ \log \|\mathbf{H}^T \mathbf{H} + \alpha^2 \mathbf{G}_1 + \beta^2 \mathbf{G}_2 \| + C''$$

 $(\alpha \rightarrow \mathbf{t}; \ \theta \rightarrow \mathbf{t}) \Rightarrow ABIC \rightarrow \mathbf{r}$ ス無限大

$$\left(\alpha^2 = \frac{\sigma^2}{\rho_1^2}, \ \beta^2 = \frac{\sigma^2}{\rho_2^2}\right)$$

ABICコンター

Fukahata, Yagi & Matsu'ura (2003)

CASE2: More than one sort of data (Joint inversion)

Expression of observation equation

InSAR:
$$\mathbf{d}_{I} = \mathbf{H}_{I}\mathbf{a} + \mathbf{e}_{I}, \quad \mathbf{e}_{I} \sim N(0, \sigma_{I}^{2}\mathbf{E}_{I})$$

seismic: $\mathbf{d}_{s} = \mathbf{H}_{s}\mathbf{a} + \mathbf{e}_{s}, \quad \mathbf{e}_{s} \sim N(0, \sigma_{s}^{2}\mathbf{E}_{s})$
 $p(\mathbf{d}_{s} | \mathbf{a}; \sigma_{s}^{2}) = (2\pi\sigma_{s}^{2})^{-\frac{N_{s}}{2}} |\mathbf{E}_{s}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2\sigma_{s}^{2}}(\mathbf{d}_{s} - \mathbf{H}_{s}\mathbf{a})^{T}\mathbf{E}_{s}^{-1}(\mathbf{d}_{s} - \mathbf{H}_{s}\mathbf{a})\right]$

$$\begin{array}{c} & & & & \\ \hline joint \end{array} \stackrel{\mathbf{d}}{\longrightarrow} \mathbf{d} = \mathbf{H}\mathbf{a} + \mathbf{e}, \qquad \mathbf{e}_{I} \sim N(0, \sigma_{I}^{2}\mathbf{E}) \\ & & & \begin{pmatrix} \mathbf{d}_{I} \\ \mathbf{d}_{s} \end{pmatrix} = \begin{pmatrix} \mathbf{H}_{I} \\ \mathbf{H}_{s} \end{pmatrix} \mathbf{a} + \begin{pmatrix} \mathbf{e}_{I} \\ \mathbf{e}_{s} \end{pmatrix} \qquad \sigma_{I}^{2}\mathbf{E} = \begin{pmatrix} \mathbf{E}_{I} & 0 \\ 0 & \eta^{2}\mathbf{E}_{s} \end{pmatrix} \\ & & \\ p(\mathbf{d} \mid \mathbf{a}; \sigma_{I}^{2}, \eta^{2}) = (2\pi\sigma_{I}^{2})^{-\frac{N}{2}} |\mathbf{E}(\eta^{2})|^{-\frac{1}{2}} \exp\left[-\frac{1}{2\sigma_{I}^{2}}(\mathbf{d} - \mathbf{H}\mathbf{a})^{T} \mathbf{E}^{-1}(\eta^{2})(\mathbf{d} - \mathbf{H}\mathbf{a})\right] \\ & & \\ \eta^{2} (= \sigma_{s}^{2}/\sigma_{I}^{2}) : \text{relative weight of data sets} \sim \text{new hyperparameter} \end{array}$$

CASE2: Joint inversion

Expression of ABIC

• Prior Information:
$$p(\mathbf{a}; \rho_1^2, \rho_2^2) = (2\pi)^{-M/2} \left| \frac{\mathbf{G}_1}{\rho_1^2} + \frac{\mathbf{G}_2}{\rho_2^2} \right|^{1/2} \exp\left(-\frac{1}{2} \mathbf{a}^T \left(\frac{\mathbf{G}_1}{\rho_1^2} + \frac{\mathbf{G}_2}{\rho_2^2} \right) \mathbf{a} \right)$$

(Fukahata *et al.*, 2003, 2004)

Bayes' Theorem

$$p(\mathbf{a}; \sigma_I^2, \eta^2, \rho_1^2, \rho_2^2 | \mathbf{d}) = c p(\mathbf{d} | \mathbf{a}; \sigma_I^2, \eta^2) p(\mathbf{a}; \rho_1^2, \rho_2^2)$$

Derivation of ABIC

$$ABIC(\alpha^{2},\beta^{2},\eta^{2}) = N \log s(\mathbf{a}^{*}) - \log |\alpha^{2}\mathbf{G}_{1} + \beta^{2}\mathbf{G}_{2}|$$
$$+ \log |\mathbf{H}^{T}\mathbf{E}^{-1}(\eta^{2})\mathbf{H} + \alpha^{2}\mathbf{G}_{1} + \beta^{2}\mathbf{G}_{2}| + \log |\mathbf{E}(\eta^{2})| + C$$
$$(\alpha^{2} = \sigma_{I}^{2}/\rho_{1}^{2}, \ \beta^{2} = \sigma_{I}^{2}/\rho_{2}^{2})$$

ABIC min \rightarrow optimum values of $\alpha^2, \beta^2, \eta^2 \rightarrow a$

Results for only InSAR data with the second second

Slip Distribution

Funning, Fukahata, Yagi & Parsons (2014, GJI)

Results for

Seismic Data

Result of Joint inversion

Funning, Fukahata, Yagi & Parsons (2014, GJI)

CASE3: Weak Non-linear Inversion

Expression of observation equation

from model parameters **a** that express slip distribution

where **f** : fault parameters (dip, strike, location) $u(x,z;\delta) = \sum_{k=1}^{K} \sum_{l=1}^{L} a_{kl} X_{k}(x) Z_{l}(z) : \text{slip distribution}$ $a_{kl} : \text{model parameters}$ $X_{k}(x), Z_{l}(z) : \text{basis functions}$ Determination of the non-linear parameters f with ABIC

Fukahata & Wright (2008, GJI)

Fukahata & Wright (2008, GJI)

4. Covariance components due to observation error

We have nominally continuous observed data

How should we sample and invert such data?

I reviewed the computation program, tried various settings, etc, but the situation didn't improve.

At a coffee time, July 2005

me "I wonder 100 m might be too short for the correlation distance."

Tim "Yes, it's about ten kilometer"

me "Oh, really?"

Observation Eq.:
$$\mathbf{d} = \mathbf{H}\mathbf{a} + \mathbf{e}, \quad \mathbf{e} \sim N(\mathbf{0}, \sigma^2 \mathbf{E})$$

$$s(\mathbf{a}; \alpha^2) = (\mathbf{d} - \mathbf{H}\mathbf{a})^T \mathbf{E}^{-1} (\mathbf{d} - \mathbf{H}\mathbf{a}) + \alpha^2 \mathbf{a}^T \mathbf{G}\mathbf{a}$$
square of residual smoothness

$$\mathbf{E} = \mathbf{I} \quad \Longrightarrow \quad E_{ij} = \exp\left(-\frac{r_{ij}}{s}\right)$$

 r_{ij} : distance between data *i* and *j* s : typical correlation length (~10km)

Important lesson: Bad modelling leads to a bad result.

A bad result strongly suggests bad modelling.

Another important lesson

It was possible to manually adjust the hyperparameter to obtain a good-looking result. But, if I did so, probably I didn't realize the importance of covariance components.

The hyperparameters should be determined statistically (objectively).

5. Covariance components due to modeling error

For the case of waveform inversion

Waveform data are basically accurate, so observation errors are small.

But if we densely sample, data include common error.

Mathematically, covariance matrix E becomes

$$\mathbf{E} = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix} \longrightarrow \begin{pmatrix} \sigma^2 & * & \cdots & 0 \\ * & \sigma^2 & * & * \\ \vdots & * & \ddots & * \\ 0 & * & * & \sigma^2 \end{pmatrix}$$

We introduced **modeling error** (discretization error), which leads to covariance components.

$$u(\mathbf{x},t) = \sum_{k} \sum_{l} a_{kl} X_{k}(\mathbf{x}) T_{l}(t) + \underline{\delta u(\mathbf{x},t)}$$
$$X_{k}(\mathbf{x}), T_{l}(t) : \text{Basis functions} \qquad (\text{Yagi & Fukahata, 2008})$$

Introduction of covariance components due to modeling error (discretization error) (Yagi & Fukahata, 2008)

discretization error:
$$u(\tau) = \sum_{k=1}^{K} a_k T_k(\tau) + \delta u(\tau)$$

 $T_k(t)$: basis function

 δu_p

When parameterizing the problem, discretization error inevitably emerges

Relation between data and model: $d_i(t) = \int_{s} G_i(t;\tau) u(\tau) d\tau$

Expression of the error in the observation eq.:

$$e_i^{discre}(t) = \int_s G_i(t;\tau) \delta u(\tau) d\tau$$

Following the law of propagation of errors, covariance components emerge.

Reproduction of high frequency components

Note that the residual mean square is *less* in the conventional

5-2. Covariance due to uncertainty of Green's function

which also tells us something is wrong in the inversion scheme

(We should be very careful to apply non-negative condition)

<Non-negative Condition>

Non-negative condition is commonly considered to be *physically reasonable*. However, the non-negative condition always leads to biased estimates, i.e.,

E: expectation u: slip X: a far distance from the source

"Unbiased" is one of the most important criterion in statistical inference.

Introduction of uncertainty of Green's function

(Yagi & Fukahata, 2011; GJI)

$$\mathbf{e} = \mathbf{e}^{obs} + \mathbf{e}^{model}$$

 $\delta {
m G}$ is assumed to be Gaussian for simplicity.

Summary

In order to obtain apparently good looking results, we shouldn't adjust the smoothing parameter and/or apply non-negative condition.

Physically unrealistic results strongly suggest that something is wrong in the setting of the inversion analysis.

By seeking the reason for unrealistic results, we can develop a better inversion method

"Bad modelling leads to a bad result. A bad result suggests bad modelling."