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ABICに基づくインバージョン解析手法の発展
Development of the method of inversion analyses 

using ABIC

Bad modelling leads to a bad inversion result.
A bad inversion result suggests bad modeling.
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0. Framework of inversion analysis using ABIC

1. More than one sort of prior information
[Fukahata et al. 2004, 2003]

2. More than one sort of data (Joint inversion)
[Fuuning, Fukahata, Yagi & Parsons 2014]

3. Weak non-linear inversion  [Fukahata & Wright 2008]

4. Covariance components due to observation error
[Fukahata & Wright 2008]

5. Covariance components due to modeling error
-1. Discretization error  [Yagi & Fukahata 2008]
-2. Errors of Green's function [Yagi & Fukahata 2011]



1. Parametric Expansion
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akl: model parameter, u: slip distribution, 
Xk(x), Yl(y) : basis function

2. Observation Equation
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d =Ha + e d: data,  e: error, e ~ N(0,σ 2E)

3. Prior Information (smoothness condition)
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(Based on Yabuki & Matsu'ura, 1992)

Inversion Algorithm Using ABIC for slip inversion (1)
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4. Bayes' Theorem ��)���(
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p(a;σ 2,ρ2 |d) = cp(d |a;σ 2)p(a;ρ2)

Given σ 2, α 2, based on maximum likelihood method

5. ABIC Minimum (ABIC: Akaike's Bayesian Information Criterion)

The criterion of ABIC minimum

→ â = HTE−1H + α̂ 2G⎡⎣ ⎤⎦
−1
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s(a;α 2 ) = d −Ha( )T E−1 d −Ha( ) +α 2aTGa (α 2 = σ 2 ρ2 : hyperparameter)
with

ABIC σ 2 ,α 2( ) = −2 log p a;σ 2 ,α 2 | d( )da∫ + C

→ σ̂ 2,α̂ 2

(Based on Yabuki & Matsu'ura, 1992)
Inversion Algorithm Using ABIC for slip inversion (2)

Ĉ = σ̂ 2 (HTE−1H + α̂ 2G)−1



Observation eq. Prior information

Bayes Thorem

p(a;σ 2 ,ρ2 |d) = cp(d |a;σ 2 )p(a;ρ2 )
= c 2πσ 2( )−(n+m) 2 (α 2 )P 2 E
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ABIC(σ 2 ,ρ2 ) ≡ −2log p(a;σ 2 ,ρ2 |d)da∫⎡⎣ ⎤
⎦ +C

minimum ABIC            Optimal σ 2 ,ρ2

(Akaike 1980)

d =Ha+ e; p(d |a;σ 2 )

s(a) = (d −Ha)TE−1(d −Ha) + σ 2

ρ2
aTGawith

r = aTGa; p(a;ρ2 )

(hyperparameter)

ABIC enables us to determine the relative weight between 
observed data and prior information objectively.



Observed data: accurate, sufficient
the model that fits to the data

Characteristic of ABIC

Observed data Prior infor.

Observed data: inaccurate, insufficient
the model that follows prior

ABIC

Fukahata, Yagi, &
Matsu’ura (2003)

far + near       far only

ABIC determines the relative weight based on statistics



Extension of inversion methods 
using ABIC



(Fukahata et al., 2004, 2003)
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(ex, Yoshida, 1989
Ide et al. 1996)

CASE1:  More than one sort of prior information
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ground displacement and band-passed from 0.01 to 1.0 Hz
and from 0.05 to 0.5 Hz, respectively. In the estimation of
the source process, we applied a multi-time window inver-
sion method [e.g., Ide et al., 1996] to each data set,
assuming that the faulting occurred on a single fault plane
and that the slip angle was unchanged during the whole
rupture process. We adopted the hypocenter (latitude =
16.00!N, longitude = 262.98!E, depth = 40 km) determined
by UNAM and the fault mechanism (strike = 300!, dip =
49!, slip = !78!) obtained by Yagi et al. [2001]. We took a
sufficiently broad fault area of 84 km " 60 km, divided into
14 " 10 subfaults (Figure 1). The slip-rate function of each
subfault (6 km " 6 km) is expanded in a series of 7 linear
spline functions with an equal time interval of 1.5 sec. A
standard rupture propagation velocity is set to 4.0 km/s,
which determines the initial time of the series of 7 basis
functions at each subfault.
[10] For each of the six representative cases we computed

the values of ABIC(a2, b2). The contour maps in the left
column of Figure 2 show the ABIC computed with the
proper expression, and those in the right column show the
ABIC computed with the improper expression. Here, (a), (b)
and (c) indicate the three different sets of data. In each
diagram of the left column we can find a clear global
minimum of ABIC. On the other hand, in the case of the
improper formulation (right column), every diagram has
only a local minimum of ABIC on a surface monotonously
decreasing as a2 and b2 approach infinity. So that, the point
of ABIC minimum deviates from the correct point, shown
in the corresponding diagram of the left column. The degree

of the deviation depends on the quality and quantity of data.
If the data are sufficient (a), the deviation is very little
owing to the steep local minimum. If the data are insuffi-
cient (c), on the other hand, the local minimum almost
vanishes and the deviation becomes significant. Further-
more, the local minimum of ABIC vanishes, if we use only
2 teleseismic P-wave records for inversion.
[11] Given the values of a2 and b2 which minimize ABIC

(Figure 2), we can directly compute the optimal values of
the model parameters a from equation (13). Substituting the
optimal values a * into equation (1), we can reconstruct the
fault slip distribution in each case as shown in Figure 3.
Note that the six diagrams in Figure 3 are so arranged that
they correspond to the six cases in Figure 2. From Figure 3
we can see that the two different formulations give almost
the same slip distribution in the case (a). In the cases of (b)
and (c), on the other hand, the slip distributions inverted
with the improper formulation (right column) are somewhat
biased and oversimplified in comparison with the correctly
inverted slip distributions (left column). Substituting the
optimal values a * into equation (1), we can also reconstruct
the moment rate function as shown in Figure 4. From this
figure we can see that the moment rate function inverted
from the data set (b) with the improper formulation (right) is
too smooth in comparison with the correctly inverted result
(left).
[12] In Figure 5 we compare the observed displacement

waveforms (upper trace) at the 15 teleseismic stations with
the waveforms computed from the proper (middle trace) and
the improper (lower trace) inversion results for the case (b).
From Figure 5 we can see that the computed waveforms

Figure 1. The locations of the teleseismic stations [IRIS-
DMC] (top) and the strong motion seismograph stations
[UNAM] (bottom) used in our inversion analysis. The
surface projection of the hypocenter and the fault plane are
indicated by the star and the rectangle with grid lines,
respectively.

Figure 2. Contour maps of ABIC(a2, b2) calculated from
the proper expression (left column) and the improper
expression (right column) for the three different data sets:
(a) 15 teleseismic P-wave records from15 IRIS-DMCstations
and 21 strong-motion records from 7 UNAM stations, (b) 15
teleseismic P-wave records, and (c) 7 teleseismic P-wave
records. The solid circle in each diagram indicates the point of
ABIC minimum.
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and H is a N ! M coefficient matrix calculated from the slip
response functions and the basis functions. Assuming a
Gaussian distribution with zero mean and unknown
variance s2 for the data errors e, we can describe a
stochastic model which relates the data d with the model
parameters a as

p d a;s2
!

!

" #

¼ 2ps2
" ##N=2

exp # 1

2s2
d#Hað ÞT d#Hað Þ

$ %

ð3Þ

[6] Now we introduce two different sorts of prior con-
straints, smoothness in space and time, represented in the
following Gaussian type of probability density functions
( pdfs), respectively:

p1 a; r21
" #

¼ 2pr21
" ##P1=2k!1k1=2 exp # 1

2r21
aTG1a

& '

ð4Þ

p2 a; r22
" #

¼ 2pr22
" ##P2=2k!2k1=2 exp # 1

2r22
aTG2a

& '

ð5Þ

Here, G1 and G2 are the M ! M symmetric matrices which
prescribe smoothness constraints in space and time,
respectively, r12 and r22 are the unknown parameters which
control the distributions of p1 and p2, respectively, P1 and
P2 are the ranks of G1 and G2, respectively, and k!1k and
k!2k represent the absolute values of the product of non-
zero eigenvalues of G1 and G2, respectively. Simply
multiplying p1(a;r12) and p2(a;r22) together, Yoshida [1989]
and Ide et al. [1996] have obtained the following form of
prior pdf:

p0 a; r21; r
2
2

" #

¼ 2pr21
" ##P1=2

2pr22
" ##P2=2k !1 k1=2k !2 k1=2

& exp #aT
( 1

2r21
G1 þ

1

2r22
G2

& '

a

%

ð6Þ

on the implicit assumption that the two sorts of prior
constraints in equations (4) and (5) are independent with
each other. In usual cases (P1 + P2 > M ), however, the
assumption is not satisfied, and so the prior pdf defined by
equation (6) can not be normalized correctly:

Z

p0 a; r21; r
2
2

" #

da 6¼ 1 ð7Þ

[7] Equations (4) and (5) mean that we should select the
model with smaller roughness of slip distribution both for
space (r1 = aTG1a) and time (r2 = aTG2a). So we define a
total roughness of slip distribution as r = r1/r12 + r2/r22. Then
we can describe the two sorts of prior constraints in a single
pdf form as
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where kG1/r12 + G2/r22k represents the absolute value of the
determinant of (G1/r12 + G2/r22), which is usually a full-rank
M ! M matrix.
[8] We incorporate the prior distribution in equation (8)

with the data distribution in equation (3) by using Bayes’
theorem:

p a; s2; r21; r
2
2 dj
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2
2

" #

ð9Þ

where c is a normalizing factor independent of the model
parameters a and the hyperparameters s2, r12 and r22. Then
ABIC is defined by

ABIC ¼ #2 log

Z

p a;s2; r21; r
2
2 dj
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da

$ %

þ C ð10Þ

The values of s2, r12 and r22 which minimize the ABIC are
chosen as the best estimates of the hyperparameters. Here,
we introduce new hyperparameters a2(=s2/r12) and b2(=s2/
r22) instead of r12 and r22. Using the proper prior pdf in
equation (8), Fukahata et al. [2003] have obtained the
following concrete expression of ABIC:

ABIC a2; b2
" #

¼ N log s a*ð Þ # log ka2G1 þ b2G2 k

þ log kHTH þ a2G1 þ b2G2k þ C0 ð11Þ

with
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a ð12Þ

a* ¼ HTH þ a2G1 þ b2G2

( )#1
HTd ð13Þ

On the other hand, if we use the improper prior pdf in
equation (6), the expression of ABIC becomes

ABIC a2; b2
" #

¼ N þ P1 þ P2 #Mð Þ log s a*ð Þ # loga2P1b2P2

þ log kHTH þ a2G1 þ b2G2 k þ C00 ð14Þ

In equations (11) and (14), C0 and C00 are some constant
terms independent of a2 and b2. The expression of ABIC in
equation (14) has a fatal defect that ABIC decreases
infinitely as a2 and b2 approach infinity.

3. Application to Actual Data

[9] On September 30, 1999, a large normal-faulting
earthquake (Mw = 7.4) occurred in Oaxaca, Mexico. We
try to estimate the source process of this earthquake by
applying both the proper expression of ABIC in equation
(11) and the improper expression of ABIC in equation (14)
to the three different data sets: (a) 15 teleseismic P-wave
records from 15 IRIS-DMC stations and 21 strong-motion
records from 7 UNAM (Universidad Nacional Autonoma de
Mexico) stations, (b) 15 teleseismic P-wave records from 15
IRIS-DMC stations, and (c) 7 teleseismic P-wave records
from 7 IRIS-DMC stations (solid triangles in Figure 1),
selected from the viewpoint of azimuthal coverage. Figure 1
shows the locations of the seismograph stations. The tele-
seismic and strong-motion records were converted into
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on the implicit assumption that the two sorts of prior
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model with smaller roughness of slip distribution both for
space (r1 = aTG1a) and time (r2 = aTG2a). So we define a
total roughness of slip distribution as r = r1/r12 + r2/r22. Then
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where kG1/r12 + G2/r22k represents the absolute value of the
determinant of (G1/r12 + G2/r22), which is usually a full-rank
M ! M matrix.
[8] We incorporate the prior distribution in equation (8)

with the data distribution in equation (3) by using Bayes’
theorem:
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The values of s2, r12 and r22 which minimize the ABIC are
chosen as the best estimates of the hyperparameters. Here,
we introduce new hyperparameters a2(=s2/r12) and b2(=s2/
r22) instead of r12 and r22. Using the proper prior pdf in
equation (8), Fukahata et al. [2003] have obtained the
following concrete expression of ABIC:
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On the other hand, if we use the improper prior pdf in
equation (6), the expression of ABIC becomes
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In equations (11) and (14), C0 and C00 are some constant
terms independent of a2 and b2. The expression of ABIC in
equation (14) has a fatal defect that ABIC decreases
infinitely as a2 and b2 approach infinity.

3. Application to Actual Data

[9] On September 30, 1999, a large normal-faulting
earthquake (Mw = 7.4) occurred in Oaxaca, Mexico. We
try to estimate the source process of this earthquake by
applying both the proper expression of ABIC in equation
(11) and the improper expression of ABIC in equation (14)
to the three different data sets: (a) 15 teleseismic P-wave
records from 15 IRIS-DMC stations and 21 strong-motion
records from 7 UNAM (Universidad Nacional Autonoma de
Mexico) stations, (b) 15 teleseismic P-wave records from 15
IRIS-DMC stations, and (c) 7 teleseismic P-wave records
from 7 IRIS-DMC stations (solid triangles in Figure 1),
selected from the viewpoint of azimuthal coverage. Figure 1
shows the locations of the seismograph stations. The tele-
seismic and strong-motion records were converted into
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Expression of ABIC
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Fukahata, Yagi & Matsu'ura (2003)



Inverted Slip Distribution

Near(21) + Far(15)

Far(15)

Far(7)

Fukahata, Yagi & 
Matsu'ura (2003)
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d I = H Ia + e I ,
ds = Hsa + es ,

InSAR:

seismic:
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ds
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2 )�relative weight of data sets � new hyperparameter

CASE2:  More than one sort of data (Joint inversion)
Expression of observation equation



Expression of ABIC

�Prior Information: p a;ρ1
2 ,ρ2

2( ) = 2π( )−M 2 G1

ρ1
2 +
G2

ρ2
2

1 2

exp −
1
2
aT G1

ρ1
2 +
G2

ρ2
2

⎛
⎝⎜

⎞
⎠⎟
a

⎛

⎝⎜
⎞

⎠⎟

�Bayes' Theorem 
p a;σ I
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2 ,η2( ) p a;ρ12 ,ρ22( )

�Derivation of ABIC
ABIC α 2 ,β 2 ,η2( ) = N log s(a*) − log α 2G1 + β 2G2

+ log HTE−1(η2 )H +α 2G1 + β 2G2 + log E(η2 ) + C
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(Fukahata et al., 2003, 2004)

ABIC min  → optimum values of      → aα 2 ,β 2 ,η2

CASE2:  Joint inversion
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only InSAR data
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Slip Distribution

Funning, Fukahata, Yagi & Parsons (2014, GJI)



Results for 

Seismic Data



Result of Joint inversion
InSAR

Seismic

Joint
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Non-linear�

u(x, z;δ ) = aklXk (x)Zl (z)
l=1

L

∑
k=1

K

∑

Xk (x), Zl (z)

akl

no approximation

� 

d = f (a,f) + e

where     f : fault parameters (dip, strike, location)
: slip distribution

: model parameters

: basis functions

The parameters responsible for non-linearity is separated
from model parameters a that express slip distribution

(H: matrix)

( : non-linear function)

� 

f

CASE3:  Weak Non-linear Inversion
Expression of observation equation

Pseudo linearization� d =H(f )a + e



�Residual sum of squares with prior (smoothness constraint)

cf. s(a;α 2 ) = d −Ha( )T E−1 d −Ha( ) +α 2aTGa

(Yabuki & Matsu'ura, 1992)

α 2�weight between observation and prior

ABIC min

Determination of the non-linear parameters f with ABIC

� 

s(a;α2 ,f) = (d−H(f)a)TE−1(d−H(f)a) + α2aTGa

f

: linear case

ABIC min

Non-linear term

Fukahata & Wright (2008, GJI)

In the same way,



-2

-1

0

1

lo
g(
a

2 )

24 28 32 36 40 44 48
dip

Fig. 5

0

2

4

6

8

10

12

D
ep

th
  [

km
]

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Strike  [km]

0

0

0.2

0.2

0.2

0.4

0.4
0.6

0.81

1.2

a: slip [m]

NW SE

0

4

8

12-12 -8 -4 0 4 8 12

0.10.1
b: error [m]

Fig. 6

-12 -8 -4 0 4 8 12

0.80.6 
0.4 

c: resolution

���
���� �	������
��

Fukahata & Wright (2008, GJI)

���20��ABIC "!#$
��������2� "!#�
�	�����$



InSAR: one-million data

How should we sample and invert such data?

We have nominally continuous observed data

seismic data
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4.  Covariance components due to observation error
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Fig. 9

An inverted result

Slip distribution of Dinar earthquakevery unstable!

I reviewed the computation program,
tried various settings, etc,
but the situation didn’t improve.
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An inverted result

Slip distribution of Dinar earthquakevery unstable!

Observed data Prior infor.

ABIC Overfitting seemed to occur.



Observation Eq.� d =Ha+ e, e ~ N (0,σ 2E)

Eij = exp − rij s( )
rij�distance between data i and j 
s : typical correlation length (~10km)
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s(a;α 2 ) = d −Ha( )T E−1 d −Ha( )+α 2aTGa
square of residual smoothness

E = I

At a coffee time, July 2005
me “I wonder 100 m might be too short

for the correlation distance.”
Tim “Yes, it’s about ten kilometer”
me “Oh, really?”
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Introduction of
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observation errors 0
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Important lesson:  Bad modelling leads to a bad result.
A bad result strongly suggests bad modelling.



It was possible to manually adjust the hyperparameter to obtain 
a good-looking result. But, if I did so, probably I didn’t realize 
the importance of covariance components.

Another important lesson

The hyperparameters should be determined 
statistically (objectively).



<Before> reasonable
Tibet, Manyi earthquake (Mw 7.6) (by Yagi on behalf of G. Funning)

For the case of waveform inversion
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extremely rough<After>

Yagi said,
� improved P-wave picks   
� etc, etc, 
�made a sampling rate higher

5.  Covariance components due to modeling error



But if we densely sample, 
data include common error.

Mathematically, covariance matrix E becomes

� 

E =
σ 2 0 0

0 σ 2 0
0 0 σ 2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

Waveform data are basically accurate,
so observation errors are small.

σ 2 * ! 0
* σ 2 * *
! * " *
0 * * σ 2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

u(x,t) = akl X k (x)Tl (t)
l
∑

k
∑ +δu(x,t)

We introduced modeling error (discretization error), 
which leads to covariance components.

(Yagi & Fukahata, 2008)Xk (x),Tl (t) : Basis functions



Introduction of covariance components due to modeling error
(discretization error)                                 (Yagi & Fukahata, 2008)

� 

u(τ) = akTk (τ )
k=1

K

∑ + δu(τ)discretization error�

� 

di (t) = Gi (t;τ)u(τ)dτs∫

� 

ei
discre (t) = Gi (t;τ )δu(τ)dτs∫

Relation between data and model�

Expression of the error in the observation eq.�

Following the law of propagation of errors,
covariance components emerge.

t

� 

δup

t

When parameterizing the problem, discretization error inevitably emerges

Tk(t) : basis function
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Reproduction of high frequency components

New Conventional

Note that the residual mean square is less in the conventional



(a) New Formulation

(b) Conventional Formulation with NNLS
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N S

Another Example of unrealistic result

Tohoku-oki 
(M9.0), 2011

Large negative & strike slips

which also tells us something is wrong in the inversion scheme 

(We should be very careful to apply non-negative condition)

5-2.  Covariance due to uncertainty of Green's function



<Non-negative Condition>

Non-negative condition is commonly considered to be 
physically reasonable.  However, the non-negative 
condition always leads to biased estimates, i.e., 

E u(x)( ) = 0 E u(x)( ) > 0

non-negative

“Unbiased” is one of the most important criterion 
in statistical inference.

E: expectation
u: slip
x: a far distance
from the source



without Non-Negative 
Condition (LLS)

with Non-Negative 
Condition (NLLS)

[Max slip]

5.0 m

2.5 m

Yagi & Fukahata
(2014, SSJ)



Introduction of uncertainty of Green's function

Observation equation : d =Ga+ eobs

New error term

Introduction of uncertainty 
of Green's function

is assumed to be Gaussian for simplicity. 

e = eobs + emodel
(Yagi & Fukahata, 2011; GJI)

d = (G +δG)a+ eobs

d =Ga+ (δGa+ eobs )

δG



(a) New Formulation

(b) Conventional Formulation with NNLS
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(a) New Formulation
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Slip Distribution
of Tohoku eq.

Conventional

New (with error of 
Green's function)

likely to be
artificial
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Inversion results of the Tohoku-oki earthquake
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1 Fault Model

Negative slip diminishes!

2016 Kumamoto earthquake
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Summary

“Bad modelling leads to a bad result.
A bad result suggests bad modelling.”


